Enhancing the Performance of SVM on Skewed Data Sets by Exciting Support Vectors

نویسندگان

  • José Hernández Santiago
  • Jair Cervantes
  • Asdrúbal López Chau
  • Farid García
چکیده

In pattern recognition and data mining a data set is named skewed or imbalanced if it contains a large number of objects of certain type and a very small number of objects of the opposite type. The imbalance in data sets represents a challenging problem for most classification methods, this is because the generalization power achieved for classic classifiers is not good for skewed data sets. Many real data sets are imbalanced, so the development of new methods to face this problem is necessary. The SVM classifier has an exceptional performance for data sets that are not skewed, however for imbalanced sets the optimal separating hyper plane is not enough to achieve acceptable results. In this paper a novel method that improves the performance of SVM for skewed data sets is presented. The proposed method works by exciting the support vectors and displacing the separating hyper plane towards majority class. According to the results obtained in experiments with different skewed data sets, the method enhances not only the accuracy but also the sensitivity of SVM classifier on this kind of data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

Using K-NN SVMs for Performance Improvement and Comparison to K-Highest Lagrange Multipliers Selection

Support Vector Machines (SVM) can perform very well on noise free data sets and can usually achieve good classification accuracies when the data is noisy. However, because of the overfitting problem, the accuracy decreases if the SVM is modeled improperly or if the data is excessively noisy or nonlinear. For SVM, most of the misclassification occurs when the test data lies closer to the decisio...

متن کامل

Combine Vector Quantization and Support Vector Machine for Imbalanced Datasets

In cases of extremely imbalanced dataset with high dimensions, standard machine learning techniques tend to be overwhelmed by the large classes. This paper rebalances skewed datasets by compressing the majority class. This approach combines Vector Quantization and Support Vector Machine and constructs a new approach, VQ-SVM, to rebalance datasets without significant information loss. Some issue...

متن کامل

Robustified distance based fuzzy membership function for support vector machine classification

Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012